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Concurrence and Foliations Induced by Some
1-Qubit Channels
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We start with a short introduction to the roof concept. An elementary discussion of
phase-damping channels shows the role of antilinear operators in representing their
concurrences. A general expression for some concurrences is derived. We apply it to
1-qubit channels of length 2, getting the induced foliations of the state space, the optimal
decompositions, and the entropy of a state with respect to these channels. For amplitude-
damping channels one obtains an expression for the Holevo capacity allowing for easy
numerical calculations.
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1. INTRODUCTION

The aim of this paper is to calculate some entanglement quantifying functions
for a rather restricted class of quantum channels, in particular for all 1-qubit chan-
nels of length 2. These channels are now well examined and classified because of
the work of Fujiwara and Algoet (1998), King and Ruskai (2001), Ruskail.
(2001), and Verstraete and Verschelde (2002). They include all external 1-qubit
channels and some important doubly stochastic ones. An introduction to quantum
channels is in Nielsen and Chuang (2000).

A channel, sayl, is of rank 2, ifT () is of rank 2 for all density operators. In
this case there are at most two eigenvalues @) different from zero. It follows
from trace preserving thaf(p) is characterized by its largest eigenvalue up to
a general unitary transformation. Nevertheless, the treatment of a general rank
2 channel is beyond our present abilities if one asks for quantities like capacity or
concurrence.

A completely positive map is of length 2, if it can be written down with two
Kraus operators, but not with one.
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Let us now repeat some definitions and properties of the quantities to be
treated. Arensemblés a finite number of density operators, every one given with
a definite probability or weight,

g={011~'~1pm;p11"'!pm}1 (l)

such that the sum of the positive numbegss 1. The density operators astates
of a physical system. We may think oigaantum alphabetith quantum letters
oj, and of agquantum messagehich chooses randomly the quantum legewith
probability p;.

The weighted sum of (1) is the average density of the ensemble,

avle] := > pjp;. 2)

While the quantum letters & are states of a physical system, the average (2) is
a “noncommutative probability measure.” Its role is quite similar to a “classical”
discrete probability distribution. The extractable information per quantum letter
of the quantum message is bounded by Holevo’s (Holevo, 1973)

XE):=Sp) =Y piS) =) pSelp) p=avE]l. (3

Here (.) is the von Neumann entropy ats{.||.) the relative entropy.

Remark 1. The important inequality

x(T(€) < x(©&)

follows from the monotonicity of relative entropy which can be proved for trace
preserving, at least two-positive maps. Counter examples for just positive maps
seem to be unknown. There are two recent reviews on the finer properties of relative
entropy, one by Petz (2002), going beyond complete positivity, and one by Ruskai
(2002).

LetT be a positive trace preserving map acting on the density operattfs of
The application ofp — T(p) generates, letter by letter, a new quantum message
belonging to the new ensemble

T(E) ={T(p1),---, T(om); Pr,---, Pm}- 4)
The 1-shotor Holevo capacityf a channell is the number
cO(T) = maxy (T())- (5)

We are aiming at a slightly more delicate expression. To see its significance,
we try to perform (5) in two steps. At first we |&trun only through the ensembles
with a given average densipy, postponing the search for the maximum, i.e. the
Holevo capacity, to a later time. In doing so, we first define

H(Tip) 1= max x(T(€) ©®)
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so that the maximum is to compute with respect to all ensembles havagy
its average density. We get a function, dependingodiand T) only. If T is a
partial trace onto a subalgebra, (6) has been celwabpy ofo with respect to the
subalgebray Connest al.(1987; see also Narnhofer and Thirring, 1985). In this
sense (6) could be callemhtropy ofp with respectto T

Schumacher and Westmoreland (1999) relate (6) to the efficiency of quantum
channels. They denote the quantity in questiony bip) and they call an ensemble
saturation (6) amptimal signal ensembhle

It is important for our purposes to rewrite (6) by the help of (3) as

H(T; p) = (T (p)) — E(T; p) )

whereE is an entanglement measure given by
E(T;p) = min i (T (pj 8
(Tip)= _min > p;S(T(e))) (8)

and the minimum is to compute over all convex decompositions. df T is a
partial trace in a bipartite quantum system, (8) is ¢inéanglement of formation
introduced in Bennett al.(1996), followed by the remarkable papers of Wootters
(1997), and of Terhal and Vollbrecht (2000). Other examples are in Bextatti
(1996, 1999). In Benattt al. (2002), some relations between the quantity (8) for
quite different channel maps are pointed out by the same authors.

It is well known thatE(T; p) is convex inp. Indeed,E is written as the
convex hull of the functior§(T (o)) in (8). The concavity of the entropy allows to
perform (8) over the pure decompositionsgofvithout changing the outcome of
the minimization. Thus

E(T;p)=min)_ piS(T(T)),  p=)_ pi7i, (©)

where all thery are pure and the minimum is to perform with respect to all pure
decompositions op. An ensemble of pure states saturating (9) will be called an
optimal ensemble

One should also notice the following. The equality between the two variational
problems (8) and (9) is due to the concavity${fT (p)). If we perform similar
computations, however with a function not being concave, the two problems are
essentially different. For certain channels, including all rank two and length two
1-qubit channels, the minimization (9) will be solved in the present paper.

The next section is a short introduction to the roof concept. We shall discuss
how to estimate (9) from below by convex functions and from above by roofs.

Next we demonstrate the procedure for the phase-damping channels, where
most things are now well understood. It follows the computation of concurrences
and of E for some rank 2 channels. We give quite explicit computations to see the
dependence of concurrences, foliations, and optimal ensembles from the Kraus
operators.
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A quite interesting observation is the following: Let us dathus module
of T the linear span of the Kraus operatorsTaf Choi (1975) has shown that
irreducibility of trace preserving cp-maps is a sole property of the Kraus module.
Here we prove for length 2 and rank 2 channel maps that their optimal ensembles
and, hence, their foliations are equal if they belong to the same Kraus module. Itis
not probable that this remarkable feature will survive for more complex channels.
Nevertheless it seems worthwhile to ask for similarities of channels with identical
Kraus modules.

It is a further consequence from our calculations that the foliations deform
continuously by changing the entries of the Kraus operators for the class of channels
considered. The foliations are more coarse properties of rank 2 cp-maps than
concurrences.

2. ROOFS

There are some general featuresin the optimization problems we are interested
in. They constitute the ground floor for more refined investigations.

Let us abstract from the specific values given at the pure states in (9) and
let us start with an arbitrary real valued and continuous fundgi@r) on the set
of pure states. Assume, we like to extemtb a function defined for all density
matrices. Clearly, there are many and quite arbitrary solutions for the problem. Let
us denote bys one of these extensions.

To place a first restriction, we require the extension to be “as linear as possi-
ble.” The requirement can be made precise as followsplbet a density operator.
If there exists a pure decomposition@tuch that

G(p) =Y _pidm), p=Y_ pimj, (10)

we call the decompositiop-optimalor simplyoptimalfor G. We also call a pure
ensemble

E=A{m1, ..., Tm; P1, ..., Pm}, pj>0,
G-optimalif

G (Z pjﬂi) =Y piG()).

A function, G, which allows an optimal decomposition (10) for every state
| call aroof or, more literally,a roof extension of gRoof extensions reflect the
convex structure of the state space and they are, in a well-defined way, “as linear
as possible.” It is not easy to gain good examples of roof extensions in higher
dimensions. In general, however, there are a lot of them for a given furngtion

Let us now consider two further possibilities to extenftom the pure ones
to all states: We may require the extension to be either concave or convex. In this
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spiritwe call a function on the state space a convex extensigif tife extension is
a convex function. Similarly we speak otancave extension ofifthe extension
is concave.

Lemma l. Given a convex, a concave, and a roof extensions of g. Then

GeonveX0) < Groof(p) < Geoncavdp) (11)
for all density operator.

The proof is almost trivial: One choosespaoptimal decomposition (10).
Then the very definition of a convex (concave) function establishes (11).

It follows that, giveng, there can be only one convex roof extension, “the”
convex roofdetermined byg. The family of roof extensions off has just one
member in common with the family of its convex extensions. Similarly there is
just oneconcave roofvhich extends.

As a matter of fact (Uhlmann, 1998), the convex roof with valggs) at the
pure states is nothing than the solution of the variational problem which mimics (9).

Geonvex,roofp) = minz Pj g(”i)- P = Z pjmj. (12)

Here one has to run through all pure state decompositions @fe get (9) by
settingg(w) = (T (r)) for purex. On the other hand, if we take the maximum
in (12) instead of the minimum, we obtain the concave roof extension of

Let us return for a moment to the more specific way of evaluating (9). To
calculateE(T; p) amounts to construct the convex roof with the functign) =
(T (r)). Looking at the roof property, there are some typical questions one should
ask. For instance we may start by a set of parameterized mappingsd we like
to know whether they have, perhaps for sggilentical optimal decompositions.
More literally, we ask for a pure decompositionmtvhich is optimal for everyls
in an appropriate range of the parametdn the next sections we like to convince
the reader that this point of view is quite fruitful. To do so, a remarkable property
of convex and concave roofs is to be explained.

Let G be a convex roof on the density operators of a Hilbert space of finite
dimensiond. At first we use convexity: Let us fix a density operagtohere is at
least one Hermitian operator, s¥y, such that for all density operatazs

G(p)=TrY’p, G >TrT w (13)
is valid. Now let us apply the roof property: There is a pure decomposition
p=3 Pim, P >0, jpure,

which isG-optimal. Thus

D opiTrY m =TrY p =G(p) = Y _ pjG(r)).



988 Uhlmann

Because of the inequality (13) this can hold if and only if
G(m;) =TrY’m;, i=12,...
Let us now look at the convex set
{w: G(w) =TrY w}. (14)

By the very constructiorG is convexly linear (affine) if restricted to this set. On the
other hand, it containg and, by the reasoning above, it contains every pure state
which belongs to &-optimal ensemble with average densityOr, in other words,

(14) contains all the pure states which can appear in an optimal decomposition of
p. Let us collect all that in a theorem (Benattial., 1996; Uhimann, 1998).

Theorem 2. Let g be a continuous function on the pure states.

(i) There exists exactly one convex roof extension, G, of g.
(i) G can be represented by the optimization procedure (12).
(iii) There exist optimal pure decompositions for every density opegator
(iv) Givenp, G is convexly linear on the convex hull of all those pure states
which can appear in an optimal decompositioroof

Let us call the convex hull of all pure states appearing in all possible optimal pure
decompositions o the optimal convex leaf gb. As proved above, and stated in
the theoremG must be convexly linear on every optimal convex leaf.

Remark 2. The remark concerns property (iii). The compact convex set of density
operators enjoys a peculiarity: The set of their extremal points, i.e. the set of pure
states, is a compact one. This allows to prove the existence of optimal decompo-
sitions (10) by the continuity of. Then, by a theorem due to Caratheodory, one
deduces the existence of optimal decompositions with a length not excedihg

the dimension of the Hilbert space which carries the density operators. It should be
noticed that the compactness of the extermal points is an extra property. Counter
examples are by no means exotic as seen by the set of trace preserving cp-maps.
To get the conclusion (iii), it suffices fay to be continuously extendable to the
closure of the set of extremal states.

Remark 3. If G is a convex roof ands is the sum of two convex functions
G = G; + Gy, thenG; andG, are convex roofs, and eve@y-optimal ensemble
is optimal forG; andG,.

We need one more definition: We call a convex rddf flat if it allows for
everyp an optimal pure decomposition

p=>_pim,  G(p)Y_ piG(r)),
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such that
G(r) =G(m2) =...=G(rj)) =...

If this takes place, evenyis contained in a convex subset, generated by pure states,
on which the roof is not only convexly linear but even constant. The merit of flat
roof, sayG, is in the nice property that every function @f say f (G), is again a
roof.

As a matter of fact, the convex roofs we are considering in the following enjoy
even a stronger property: They are constant on the convex leaf of gvieeyq is
constant on the pure stateseMerypure ensemble which is optimal f@.

3. PHASE-DAMPING CHANNELS

Let us consider some particularly simple examples of 1-qubit channels, the
family of phase-damping channelsto see whatis going on in applying concurrences
(Wootters, 1997), to 1-qubit channels according to Uhlmann (2001). For the most
symmetric channel of the family, with= 0 in (15), the theorem below and the
insight into the foliation of the state space are due to Levitin (1994).

Let|z| < 1 be a complex number. Define the mBgby

X — <Xoo X01) > T,(X) = ( foo Z>()1) . (15)
X10 Xi1 X"X10 Xua

The application of such a map does not change the pure $atgsl and|1) (1],

and there are no other trace preserving and completely positive 1-qubit maps with

this property than those given by (15).

Before starting the calculation, let us have a look on a bundle of parallel
lines which foliates the state space. Geometrically, the 1-qubit state space can be
represented by the Bloch ball. The Bloch ball is the unit ball sitting in the “Bloch
space,” thatis in the real Euclidean 3-space of all Hermitian matrices of trace one.
The “Pauli coordinates X;, of a matrix are read off from

1
X = E(Xol + X101 + X202 + X303).

With xg = 1 the real coordinates;, X, X3, parameterize the Bloch space, and in
this context they are referred to as “Bloch coordinates.” Finally, the Bloch ball is
the unit ball with respect to the Bloch coordinates.

Let us return to the phase-damping channels. Thexine x, = 0, i.e. the
Xz-axis, remains pointwise fixed under the mappings (15). On the intersection of
the line with the Bloch balE(T;; p) must be zero. One aim is to show th&({T;; p)
is constant on the intersection of the Bloch ball with every line which is parallel to
the linex; = x, = 0. These lines are given by fixing the valuesxgfandx, and
letting x5 free. Equivalently, such a line can be given by fixixg in (15). Now
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we can write down a very simple convex roof, the restriction of the function

X+ X]2_ + Xg = 2|Xo1|

onto the state space. Indeed, this function is convex on the Bloch space. It is even
a seminorm there. And itis, trivially, a flat roof: It is constant on every line parallel

to thexz-axis of the Bloch space. The intersection of a given line with the Bloch
ball is either empty, or touching the ball in just one point, or is a line segment with
two pure states as end points. In the latter case, the pure states of the segment are

1-p o P X )
! ’ 1- = , 16
( X10 p ) <X10 1-— p) p(1— p) = [Xol (16)

with 2|xp1] < 1. For 2xp1] = 1 the line touches the Bloch ball at one pure state.
With a flat roof, one can build other roofs just by taking a function of itf If
is areal function on the unitinterval (|xo1|) is again a flat roof. By an appropriate
choice of f we shall find the form oE(T; p).
To do so, we need to compute the determinant

dEtTZ(X) = XooX11 — ZZ'Xp1X10 = detX + (1 — sz)Xoj_Xlo.

Taking X pure, sayx;x = a;a;, only the second term is different from zero and
we remain with

detT,(X) = (1 — [zP)lacal?,  Xjk = aja;. 17)

Using ideas from Wootters (1997) and Uhimann (2000), we definectheurrence
of T, for Hermitian X by

C(Tsi X) 1= /(L — [22) (<2 + X3) (18)

The definition differs from the one used in Uhimann (2001) by a factor of 2. It
influences, here and later on, the appearance of some equations. The concurrence
is a seminorm on the Bloch ball, and, if restricted to the Bloch ball, it is the unique
convex roof satisfying

C(Tg; ) = 2\/detT, (), Tpure (19)
Following again Bennett al. (1996) and Wootters (1997), we introduce
h(x) = —xlogx — (1 — x) log(1 — x),

and, using ad hoc notations,

hy(x) = h (1;)()

and

ho(x) = ha(y),  y=V1-x.



Concurrence and Foliations Induced by Some 1-Qubit Channels 991

Theorem 3. Forall |z] < 1and all density operatorg
E(Tz; p) = hao(C(T3; p)) (20)

holds. Itis Hp1) = E(p.) for two density operatorgy; and p,, if and only if they
have equal distances to the-axis of the Bloch space. The pairs of optimal pure
states are given by (16).

Proof: We already know that (20) is a roof with the desired values at the pure
states. We only have to show that it is convex. Then, by the uniqueness theorem,
we are done. One calculates the first and the second derivatives agsuming

log = In. At first we get

, X 1+y 1+y 1
x) = — In="2, IR A
2 2y 1-y 1-y vy

Forx > 0 andy > 0 we findh, > 0. Expanding the logarithm, one gets

" 1
n3(x) = 2—y3 In

1 1 y3 y5
(X)) = — = - Z Z1...]1>0
2(x) y+y3<y+3+5+ >
within 0 < y < 1, which proves the convexity bb. LetC(p) be a convex function
on the state space (or on another convex set) with values between 0 and 1. Let us
denote by a dot the differentiation of C in an arbitrary direction. Then

ha(C)" = hj(C)CC + hy(C)C.

By the convexity ofC one get€£ > 0, and we have sedn > 0, on the unitinterval.
Thus, the second term is not negative. As we kifidwe- 0, we have shown the
convexity of the function (20), and we done. O

Lemma 4. Let C be a convex function with values in the unit interval, defined
on a finite dimensional convex set. ThefQ) is convex.

It is remarkable that the whole set of phase-damping channels induces a
single foliation of the state space: The foliation is a property of the Kraus module
belonging to the channels. The single foliation forces the concurrences to differ
by a factor only ifz is changing.

Now we have to add a further structural element as a guide in treating more
general 1-qubit channels. What we have in mind is, up to a contracting factor, a
reflection on the plang; = 0. In Bloch space a reflection is not a proper rotation.
Its functional determinant must be negative, enforcing its implementation by an
antilinear operator in the 1-qubit space. The antilinearity is unavoidable.
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Let us define an antilinear operat#y by

1

a*
9, <a°> —Vi_zz ( 1) : 1)
a 3
The operator is an Hermitian one; i.e., it satisfies

(D1|D2]¢2) = (2[V2]¢1)

for all pairs of vectors. Being antilineat,acts to the right, but not to the left. With

two arbitrary vectors,
L _(bo
ja) = (a1> RS (bl) :

we get the following relation.
(ald;b) = v/1— 2z (aohy + aibo)". (22)
In combination with (17) we obtain the equation
4 detT,(ja) (@l) = |(alv.la)l?, (23)
which, together with (19), can be written
C(Tz [a)(al) = Nalv.|a)|. (24)

Because the concurrence is a convex roof, we can now return to one of the properties
of such function:

C(Tz p) = min Y pjligjl:16;)| (25)

where the minimum runs through all possible ways of represeptiaga convex
combination

p=>_ Pjlo)e;l.

The minimum will be attained by choosing the decomposition with a pair (16) of
pure states. With the same optimal decompositiop tife optimization problem
for E(T,; p) can be saturated. (The diagonal entrieg ofiust be 1/2.)

Remark 4. Let us assume we like to solve for the phase-damping channels the
variational problems (8), but we like to replace the minimization by the maximiza-
tion, resulting in concave roofs. Now the foliation for the maximization is given
by the intersection of the planes perpendicular toxtfraxis with the Bloch ball.

The foliation is the same for all. The intersection of a plane with a ball contains

a whole circle of extremal states. Hence there are very many different optimal
decompositions for given mixeol
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4. CONCURRENCE

Let us now discuss some generalities for rank 2 channels and let us see where
the difficulties are. A quantum channal, is of rankk if the maximal rank of all
pictures, T (p), isk.

Let T be of rank 2. We assume in addition tHamaps into a 1-qubit space.
Then the determinant af(p) is the product of the eigenvaluesdfp). We define
the concurrence;(T; p), of T to be the convex roof which attains at pure states
the values

C(T;m) = 2\/detT,(x), 7T pure, (26)

completely similar to (19). Being convex with values between 0 and 1, we can
literally repeat the construction as in (20). The result is a convex function which
coincides at pure states with. But in general we do not know whether (26) is a
flat roof. Hence, we only can conclude

E(T; p) = ho(C(T; p)). (27)

If, however, (26) is a flat roof, then the right-hand side of (26) is a flat convex
roof and we have two convex roofs agreeing on pure states. Then equality must
hold.

Lemmab5. If C as given by (26) is a convex roof, then we have
Cflat = E(T; p) = ha(C(T; p)). (28)

Itis useful to know whether the concurrence of a channel lmaga flat roof.
The following theorem gives a whole class of them.

Theorem 6. Let® be an antilinear Hermitian operator and defing @s the
convex roof extension of

Co(lp) (@) = (@) (29)
for all pure statesr. Then the convex roof Qs flat. It is
Co(p) = max:o,xl—Z/\j}, (30)
i>1

wherei; > A, > - - - are the ordered eigenvalues of
(pl/Zﬁpﬁpl/Z)l/Z'

Corollary 1. If there exists an antilinear Hermitiat such that
4detT () = Tredn v, 7T pure, (32)
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is valid for all pure density operators then

Cs(p) =C(T; p) (32)
is a flat roof and (28) is valid.

This theorem is proved in Uhlmann (2000). It provides a certain application
of the methods of Wootters and others (see Wootters, 2002). As already mentioned,
with T the partial traceE(T; p) is the entanglement of formation. In the 2-qubit
systemy is the Hill-Wootters conjugation.

For 1-qubit maps (30) reads, — 1, and one can become more explicit.
Abbreviate

& = (07 %0203%) .
Taking the trace of the characteristic equatiog oésults in
Tre? + 2dett = (Trg)?

and the squared sum of the eigenvalues bécomes

(A1 + 22)% = Tr(p1p2) + 2 dets.
Combined with the relation

(A1 — 22)% = (A1 + 12)* — 4 det,
it yields

(A1 — 12)® = Tr(p1p2) — 2y/(detpy)(detpy).

Substitutinge; = p andp, = 9p® provides (Uhimann, 2000),
Co(p)? = Tr(pvp?) — 2(detp) detv/ 2. (33)

5. 1-QUBIT CHANNELS OF LENGTH 2

In this section we like to show that the corollary to the preceding theorem
appliesto 1-qubit channels of length 2. As we shall see, the existence of an antilinear
Hermitiang fulfilling (31) does not depend on trace preserving.

Let AandB be two linear independent operators on a two-dimensional Hilbert

space and
A (aoo a01> , B— (boo b01> ,
app an bio b1

their matrix representations with respect to a reference basis.
T(X) = AXA + BXBf (34)
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is acompletely positive map of length 2. The following has been proved in Uhlmann
(2001) by straightforward computation.

Theorem 7. There is an antilinear Hermitian operatata g such that for all
pure states
4 detT (la)(al) = |(al9a,slb) I,
where T is given by (34).
If such an operator exists, it is determinedibyp to a phase factor only. The

ambiguity is a natural one due to a geometric phase.
To describe?, one can introduce its matrix representation

one ()= (omt o) @
and express the matrix elements by thoséaind B.
oo = 2(P1000 — A10P00)*, 11 = 2(B01b11 — bosaur)”, (36)
o1 = @10 = (Aoob11 — a11P00 + A01b10 — A10001)" (37)

Up to a factor, because of another normalization of the concurrence, this is in
agreement with Uhlmann (2001). Clearymust be skew-symmetric in the matrix
entries of the Krause operators,

Uag+U8aA=0.

Comparing the equations above with phase-damping channels, ong.gets
—0;.

One may expect a more transparent representation than (36) and (37). This is
possible by the spin-flip operatér, the “fermion conjugation” for 1 qubit,

"()-(%)

((bloaoo — a10bp0)*  (Boob11 — alob01)*)

After calculating

(201b10 — @11000)"  (A02P11 — A11001)*
and comparing that expression with (36) and (37), we get

Oap = Al0;B — BTo; A (38)
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Remembe@I = —0¢ = 9;1 to see that (38) is an antilinear Hermitian operator—
as it should be. Now assume a transformation of the Kraus operators according to

A, B — C1AC,, C1BC,. (39)
Because of
Clo;Cy = (detCy)*6;
the antilinear operator must change as follows:
9a5 — (detCy)*Civa sCo. (40)

That it is of value to classify superoperators up to a transformation (39) is also
seen by the results of Verstraete and Verschelde (2002).

Let T’ be another length 2 cp-map with Kraus coefficieAtandB’, and let
us assume a linear dependence

A = oA+ 1o1B, B’ = u10A + n11B. (41)

By the help of (38), or by observing that (36) and (37) can be expressed by
determinants in the coefficients of the Kraus operators, one can reproduce the
relation

Ua,p = (Hoot11 — Ho1it10) DA B- (42)

Why is this interesting? It shows that our procedure associates, up to a scalar
factor, to every pair of operators, chosen from the linear sp#nasfdB, the same
antilinear operator. With other words, to every two-dimensional Kraus module a
one-dimensional linear space of antilinear Hermitian operators is attached.

Remark 5. Regard the Kraus modules for the 1-qubit channels as the points of
the second Grassmann manifold of the space of linear operators. By attaching the
multiples of? 4 g to the corresponding points, one gets the line bundle. Itis dual to
the determinant bundle as one can deduce from what follows. For the time being,
we shall not follow further this way.

An observation, related to (42), is
A ®B — B ®A = (uoom11 — noit10)(A® B— B ® A). 43)

If we apply the operator identity (43) to|aa), we get an antisymmetric 2-qubit
vector. There is, up to a factor, only one such vector and the yet-unknown factor
must transform as in (43). Performing the calculations, one gets

1
(A® B—-B® A)aa) = é(a|z9A,B|a)*(|01) —110)). (44)
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Remember that for a single channgl,only the absolute value of the expectation
value at the right-hand side is relevant.
Two channels may be called “unitary equivalent” if

T'(p) = U1 T (U, pUz) Ut

with two unitariesJ; andU,. For trace preserving channels we can assume

A= (ago a?) , B= (b?o b81> (45)
up to unitary equivalence, (Rusketial., 2001). Theny becomes diagonal,
ons () =2 Cievye) 9
Abbreviating
Yo = 2b10d00,  Y12bo1a11
we can write
9p0 = < ,OOOYOVS* —/Oloyoi’f) _
—po1Y1Yo  P11Y1Yq
It follows

Tr popY = PgoYo¥o — Po1Y0Y: — PoYLYs + PaoY1Yi-
On the other hand,
2 detp detv/92 = 2|yoy1l(poop11 — Po1P10)-
Pasting all things together, we get from (33)
C2 = (ool Yol — p111Y11)* + 2IYoY1lpo1010 — P YoYi — PZYiYi-

We now choose the square rootsygly; and yjy: such that their product
becomes positive. Then we can write the remaining terms above as follows:

- (pm\/yTyI - pm\/ﬁ)z
so that, finally, we see
C(T, p)* = 4L1(p)* + 4L2(p)* (47)
werel; andL, are real-valued and linear in the entriesoof

L1(p) = poolb1odool — p11lbora1] (48)

La(p) =i <,001\/ b10boob,85; — p10v/ bIoagobOB'ill) (49)
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and we have to choose the signs of the roots according to

\/ blOaOObE;laIl\/ bioaéobOlall = 0. (50)

The result compares well with the more symmetrical case of the phase-damping
channelsC is the square root of a positive semidefinite quadratical form. Geo-
metrically, the points of constant concurrence and, henck, afe ellipse-based
cylinders.

In the nondegenerate case none of the two linear forms vanish identically.
The foliation of the state space at which the concurrence andiBpp) remain
constant are given by the straight lines which are the intersection of the two families
of planesL; = constant,L, = constant, in the Bloch space. There is just one
straight line at which the concurrence is zero. It goes through the two pure states
which are mapped onto pure stateslhyJp to normalization these two pure states
belong to the vectors

(Zi) . bioaea3 = bpjassa’.

They are mapped by to vector states of the form
% broa11(a})? = borage(d)? = 0
a ) 10211(8p)” = Dp1d00(37)” = 0.

Let us now shortly look at théegenerate casa whichbg;b;¢ is zero in (45). The
amplitude-damping channels are well-known examples. They can be defined by
the Kraus operators

/1 0 (0 yI=p
SN T
with 0 < p < 1. The action ofT is described by
<Poo pm) N <,000+ (1-ppun V/1- p,o01)
P10 P11 /1= pp1o Po11

(47) becomes
C(T; p) =2y p(1 — p)p11. (52)

The two families of planes degenerate to one family, the planes perpendicular to
the 3-axis of the Bloch space. The foliation dictates the behavie(®f p) and
E(T; ).
One observes that, givem , the entropyS(T (o)) becomes maximal if the
off diagonal entries op vanish. Therefore, ip’ is the diagonal part gb, We get

E(T:p) =E(T;0),  H(T;p) <H(T;p)
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and, to obtain the Holevo capacity, it suffices to consider diagonal density operators
only:

CW =maxH(T;p), p'diagonal

Writing r for p11, such that O< r < 1, we can rewrite the capacity as follows:

_\/f
1 1 Aép(l p)r? ' (53)

CO(M) = max | h(pr) —h
<r=<

BecauseH (T; p) is a concave function, (53) is a concave functionm @nd, ob-
viously, not degenerate. Therefore, for any given @ < 1, there is exactly one
valuerg of r at which the maximum in (53) is attained.
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